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A mathematical model has been derived of the cascade of ideally stirred tank reactors with 
chemical reaction between dispersed solid particles and a continuous fluid medium. The kinetics 
of the reaction is controlled by diffusion within the particles and by the transport of mass from 
the particle surface into the bulk of the continuous phase . 

The mass transfer between solid particles and a continuous fluid phase is encountered 
in many operations of chemical technology. Equipment for such operations may be 
often simulated by a cascade of ideaIly stirred tank reactors (in the following: CSTR) 
in which the kinetics is controlled by diffusion from within the particles to the surface 
and by the convective transport from the surface into the bulk of the continuous 
phase, i.e. by the inner and outer diffusion. 

The papers that have been published on the subject have been concerned only with such con
ditions under which the reaction kinetics is not affected by concentration in the continuous 
phase l - 4 , or have dealt with batch reactors 5 ,6. In the preceding communication 7 we examined 
counter-current extraction in a cascade of CSTR's where the rate of extraction was controlled by 
diffusion within the particles, while the resistance of the boundary layer on the particle surface 
was negligible. The subject of the presented paper is a so far uninvestigated general case of mass 
transfer between solid particles and a fluid in a cascade of CSTR's when the kinetics of the process 
is controlled simultaneously by the outer and inner diffusion. 

THEORETICAL 

The model is formulated on the following assumptions: 

1. the system consists of a sequence of k equal CSTR's operating under steady 
state regime; 

2. the solid particles are isotropically porous spheres (porosity equals e) of equal 
radius R; no change of volume or particle break-down occurs during the process; 

3. the concentration of the reactant within the pores is governed by the second 
Fick's law with an effective diffusivity D ; 

4. the resistance of the boundary layer on the particle surface exerts its effect 
through the mass transfer coefficient 11; 
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5. the concentration of the reactant in the feed to the first CSTR of the cascade 
(the reactors are numbered in the direction of flow of the solid phase) equals co,o' 

Under these assumptions the concentration of the reactant within the pores of the 
solid particles at the outlet of the i-th CSTR is given by the following parabolic 
partial differential equatio~ 

with the initial and boundary conditions 

't"i = 0: Cs,i = Cs •i - 1(r ; 't"1; •.. ; 't"i-1)' 

for i = 1 we have 

Cs.l = cs.o; 

r = 0: cs.i =1= 00 , r = R: - D aCs,)ar = h(cS • i - Cf.i) 

(1) 

(2) 

(3) 

(4), (5) 

('t"1 through ri are -the residence times of particles in individual CSTR's). On intro
ducing new dimensionless variables 

x = rjR, 

U i = cf.dcs.o , 

Eqs (1) through (5) transform into 

for i = 1 we have 

x = 0: Yi = 0; 

Yi = x(cs.Jcs.o - u i)· 

x = 1: C( aYijax = - Yi , 

(6), (7) 

(8), (9) 

(10) 

where C( = (hRjD - 1)-1. 

(12) 

(13), (14) 

(15) 

The Laplace transform of a general solution to Eq. (10) for distribution of the 
dimensionless concentrations within the pores of the particles exiting from the i-th 
CSTR, Yj, has the form of an infinite series 
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(16) 
where p is an argument of the Laplace transform defined as 

Thecoefficients An in Eq. (16) are determined by 

(18) 

and An are roots of the characteristic equation 

(19) 

The dimensionless concentrations Yi in a particle exiting from the i-th CSTR are 
functions of the coordinate x and the dimensionless residence times of the given 
particle in the first i reactors, i.e. t 1 - ti• Corresponding variables {yJ are functions of x, 
the Laplace parameter p and the dimensionless residence times in first (i - 1) CSTR's, 
i.e. t 1 - t i _I. Distribution function of the dimensionless residence times in the i-th 
stage of the cascade of k equal CSTR's is 

<P(ti) = (kit) exp (-ktJt) , 

where 

(20) 

(21) 

and i is the average residence time in the whole cascade. In the following we shall 
concentrate on determining the time-averaged values of the dimensionless concentra
tion in the dispersed phase on exit from the i-th reactor, which we shall denote as .vi. 
This quantity depends on the coordinate x only and it is given by the following 
multiple (i) integral 

On taking the Laplace variable in Eq. (17) so as to have 

p = kit, (23) 
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one can arrange Eq. (22) by making use of Eq. (16) and with the aid of 

flx ; t l ; ... ; ti- I) = Yi - I(X; t l ; .. . ; 1i - l ) + X(U i_1 - Ui) (24) 

to obtain an expression for Ylx) 

The advantage of this approach rests in that the expression for the average dimension
less concentration Yi could have been derived directly on the basis of the transformed 
{yJ without recourse to the explicit expression of the dimensionless concentrations 
Yi' Eq. (25) will now be used to find relation for the fraction of unconverted species, 
I i' in particles leaving the i-th CSTR. This fraction, which from technological point 
of view is the most important variable, is defined by 

(26) 

Eq. (25) is now multiplied by sin (AmX) and both sides integrated with respect to x 
in limits 0-1. With respect to the orthogonality of the functions sin (AnX) over the 
interval 0 ~ x ~ lone obtains, after changing from In to the original subscript n, 
a relation 

f>i(X) sin (An X) dx= Bn f>i-l(X) sin (AnX) dx + (u i - t - u i) BnCn, (27) 

where Bn = p/(p + A~) , (28) 

Cn = f> sin (An X ) dx = - (1 +0() A;l cos (An) . (29) 

For i = 1 Eq. (27) reduces to 

IYI(X) sin (AnX) dx = (1 - u 1) BIICn . (30) 

Collection Czechoslov. Chern . Cornrnun . IVol. 38( ( 1973) 



A Model of the Cascade of Stirred Reactors 1325 

(31) 

On combining Eqs (25), (26) and (31) and making use of 

J:sin 2 (J'nx) dx = 0'5(1 + rx + rx2A~) cos 2 (An) (32) 

one obtains after some algebra the final expression for Ii 

ex) i-1 

Ii = 6 IX II [(] - Ul) B~ + I(Um - U m + l ) B~-mJ + Hi' (33) 
n=1 m=1 

where (34) 

However, the thus far undetermined dimensionless concentrations of the reactant 
in the continuous phase, U I - Ui ' still appear in Eq. (33). The necessary relations 
for the calculation of these concentrations, or their elimination, are obtained from 
mass balances in individual CSTR's. The form of the balance equations depends 
on the arrangement of flows of the continuous and dispersed phase. 

Counter-current flow. In case of the counter-current flow the mass balances in in
dividual CSTR's are 

where 

Zj = Hi-l - U i , 

.•. +Zk+1 = 1 - Uk + 1 , 

= 0, 

= 0, 

(i = 2,3, ... , k) 

(35) 

(36) 

In these expressions it is assumed that U k + 1 is known and the coefficients a j (i = 
= J, 2, ... , k) are determined by 
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<Xl 

a i = 6q L B~-1(1 - Bn) Xn . (37) 
n=1 

The relation for aj was obtained from Eq. (33) and the set ofEqs (35) after an arrange
ment which utilized the following relations 

00 

11 = 6(1 - u 1)LBnX n + U 1 , (38) 
n=l 

00 

lim (II - u 1)/(1 - u 1) = 6 L Xn = 1 . (39) 
P~<XI n = 1 

Eq. (39) is dictated by the fact that in limit p -> CXJ (e.g. for very low values of the 
effective diffllsivity D) the fraction of the unreacted species in the whole system 
approaches unity. 

The set (35) is solved (similarly as in paper 7) by su bstitution 

(i = 1,2, ... , k) , (40) 

leading to equations 

k 

L bi = (1 - Zl - U k +1)/Zl = (u 1 - Uk+I)/U - u1) , 
i=l 

b1 = ai' 

b2 = a2 + a 1b1 , (41) 

b3 = a 3 + a2 b 1 + a1 b2 , 

Calculation of the quantities bi from Eqs (41) is then easy ; individual values of Ui 

are then found by subsequent substitution into Eqs (40) and (36). 

Co-current flow. The mass balances at co-current flow are as follows 

(42) 

It is assumed again that the dimensionless concentration in the continuous phase 
at the inlet (uo) is given. The set (42) is arranged by introducing coefficients a i 
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" (1 - u 1) al + Uo - Ul = 0, 

(1 - u 1) a2 + (u 1 - u2) a1 + u t - U2 = 0, (43) 

Individual U j are calculated from Eqs (43) by successive elimination; the values 
of J j then follow from Eqs (42). 

Cross flow. The balance equations for the cross flow are 

(44) 

The value of Uo is assumed again to be known. After substituting for the coefficients 
a j one obtains 

(1 - u 1) at + U o - U t = 0, 

(1 - u t ) a2 + (u t - u2 ) a1 + tlo - U2 = 0, (45) 

The sets (44) and (45) are solved again by successive elimination. 

RESULTS 

The derived relations enable the reaction yields in a cascade of CSTR's with a given 
arrangement of flows of the continuous and dispersed phase (counter-current, 
co-current and cross flow) to be computed provided that the above listed simplifying 
assumptions are met. The input data for the calculations are: the number of CSTR's 
in the cascade k, the average residence time of particles in the cascade T, concentration 
of the reactant in both phases in the feed cs,o and cr,k+ 1 or cr,o, the ratios DjR2 and 
hRjD (the calculation does not require the knowledge of D, hand R themselves - see 
Eqs (J 5) and (21)), and finally q, that is the ratio of volume flow rates of the dispersed 
and continuous phase multiplied by particle porosity. The ratios DjR2 and hR/ D 
may be determined for a given system from measurements on a laboratory batch 
reactor by evaluating the dependence of the unconverted.fraction on the residence 
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time and the mixing Reynolds number4
• The relations for recalculation of hR'/D at 

changed intensity of mixing are available in the literatures. . 
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FIG . 1 

The Dependence of l~ on t and IX for Counter
Current Flow of Phases 

q = 0·] ; Uk + 1 = 0; k is indicated on 
curves . 
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FIG. 2 

The Dependence of lk on!! and IX for Counter
Current Flow of Phases 

q = 0·4; Uk+! = 0; k is indicated o n 
curves. 

To calculate the fractions of unconverted species at the outlet of individual CSTR's , one deter
mines first the dimensionless parameters IX, t and p from definitions (15), (21) and (23). Further, 
the coefficients a i are computed by means of Eq. (37). To evaluate the infinite series in Eq. (37) 
one uses Eqs (28) and (34) to find Bn and X n, while the roots An are given by solution of Eq. (19). 
The coefficients ai are then substituted into the balance equations for a given arrange ment 
of flows of the dispersed and continuous phase (Eqs (35), (36), (40) and (41) for counter-current 
arrangement, (42) and (43) for co-current arrangement and Eqs (44) and (45) for the cross.· flow) 
and their solution provides the values of the fractions Ii . 

The relations for the counter-current arrangement were programmed for a computer in Algo l 60 
language. The quantities IX, q and Uk + 1 were fed as the input data; the result were the·v a lues 
of the fractions lk in the product of the cascade of k reactors for preselected values of k and t. 
The coefficients An' which are not functions of k and /, were conveniently evaluated at the begin ning 
of the computation. 30 to 50 terms of the infinite series in Eq. (37) had to be taken in order that 
the coefficients ai be computed to 5 digits . A part of the results reflecting the dependence of lk 

ont, k, IX and q is presented in graphical form in Figs 1 and 2. 

LIST OF SYMBOLS 

An> ai coefficients defined in Eqs (18) and (37) 
Bn,b i coefficients defined in Eqs (28) and (40) 
Cn coefficients defined in Eq. (29) 
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Cr . j concentration of reactant in continuous phase in the i-th CSTR (mol/cm3
) 

c5 . j concentration of reactant in particle pores at the outlet of the i-th CSTR (mol/cm3
) 

D effective diffusivity of reactant in dispersed phase (cm2 /s) 
f,ex; t 1; ... ; 1j _ 1) value of Yj at zero residence time in the i-th CSTR (Eq. (11)) 
h mass transfer coefficient between panicle surface and the bulk of continuous phase 

(cm/s) 
1j 

k 

p = kit 
q 

R 

fraction of unconverted reactant in dispersed phase at the outlet of the i-th CSTR 
(with reference to concentration in dispersed phase at the inlet of the cascade) 
number of reactors in the cascade 
Laplace variable 
volume fraction of flow rates of dispersed and continuous phase times particle 
porosity 
particle radius (cm) 

,. distance from center of particle (em) 
tj = D7: ;/R2 dimensionless residence time in the i-th CSTR 
1 = Dr/ R2 dimensionless average residence time in the cascade 
Uj = Cf .;/C

5
•
0 

dimensionless concentration of reactant in continuous phase in the i-th CSTR 
Xn coefficient defined in Eq. (34) 
x = r/ R dimensionless distance from center of particle 
Yj dimensionless concentration of reactant in particle pores at the outlet of the i-th 

CSTR, see Eq. (9) 
Y j value of Yj averaged over all particle residence times in the first to i-th CSTR's, 

see Eq . (22) 
Zj coefficients defined in Eqs (36) 

parameter defined in Eq. (15) 
particle porosity (volume of pores as a fraction of the macroscopic volume of 
particle) 

An roots of Eq . (19) 
7:j particle residence time in the i-th CSTR (s) 
r ' average residence time in a cascade of k equal reactors (s) 
4>(t) distribution function of the dimensionless particle residence time in single CSTR 

Subscripts 

i, k 
j,rn,n 

fluid phase 
i-th or k -t h CSTR (counted in direction of flow of the solid phase) 
summation indices 
solid phase 
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